


### ROBOCUP Modelling and Optimisation in the RoboCup domain

Friday 20<sup>th</sup> January, 2023

Melvin KISTEN, Fontaine NGUIMATIO, Siyabonga MSWELI



| Structure |  | Model P1 |  | Model P2 Results |
|-----------|--|----------|--|------------------|
| •         |  |          |  |                  |

#### STRUCTURE

- 1. Introduction
- 2. Aim P1
- 3. Aim P2
- 4. Model P1
- 5. Issues
- 6. Model P2

7. Model P2 Results

## INTRODUCTION

| Introduction | Aim P1 | Aim P2 | Model P1 | lssues | Model P2 | Model P2 Results |
|--------------|--------|--------|----------|--------|----------|------------------|
| ⊙●           | oo     | oo     | 000      | 00     | 00       | 000000000        |

#### WHAT IS ROBOCUP ALL ABOUT?

- The WITS RoboCup Team was founded in July 2019
- Affiliated with the RAIL Lab from the School of Computer Science and Applied Mathematics at the University of the Witwatersrand
- Goal is to develop a sustainable and competitive team that competes in the annual international RoboCup robotics competition
- RoboCup is a platform for testing learning scenarios where multiple skills, decisions and controls have to be learned by a single agent and agents have to cooperate or compete in the game of soccer.

## AIM P1

| Structure | Introduction | Aim P1 | Aim P2 | lssues | Model P2 | Model P2 Results |
|-----------|--------------|--------|--------|--------|----------|------------------|
| o         | 00           | o●     | oo     | oo     | 00       | 000000000        |

#### WHY ARE WE DOING THIS?

- Kicking is necessary to field a competitive team in order to score goals and defend effectively
- Currently, there exists a parameterised policy which executes a basic kicking behaviour within a fixed time window
- Can we optimise the values of these parameters to maximise the distance travelled?

## AIM P2

|  | tructure l | Introduction<br>00 |  |  | Model P1<br>000 |  |  | Model P2 Results |
|--|------------|--------------------|--|--|-----------------|--|--|------------------|
|--|------------|--------------------|--|--|-----------------|--|--|------------------|

#### WHY ARE WE DOING THIS?(P2)

- Soccer is a multi-agent dynamic environment which requires cooperation between teammates to succeed
- Balance needed between minimising space for opponent players and allowing teammates to occupy free space
- Given set of all player positions (teammate and opponent) and ball position, can we optimise positions to:
  - Minimise defensive threats
  - Maximise counterattack opportunities

## MODEL P1

| Structure | Introduction | Aim P1 | Aim P2 | Model P1 | lssues | Model P2 | Model P2 Results |
|-----------|--------------|--------|--------|----------|--------|----------|------------------|
| o         | 00           | oo     | oo     | 0●0      | 00     | 00       | 000000000        |
|           |              |        |        |          |        |          |                  |

MODEL P1

- Basically we are trying to define the maximum distance that a ball can reach, considering that the position of the ball is known, and it is not in motion.
- The equation below possible mathematical model to find the optimum possible distance.

$$R_{max} = (\omega, v, a)$$

•  $\omega$  spin rate velocity, v is velocity of the ball, and a is angle of ball defined by the parameter.

Structure Introduction Aim P1 Aim P2 Model P1 Issues Model P2 Model P2 Results o oo oo

• From the 22 parameters, the parameters of the leg are described as:

$$IK_{pti} = \begin{cases} IK_{Ai} \to foot\\ IK_{Bi} \to Knee\\ IK_{Ci} \to Hip \end{cases}$$

- $i = \{0, 1, \dots, 3\}$  which are dimensions of the joints and p = (x, y, z) which are components describing.
- From the last two equations, we get:

$$R_{max} = a_0 + (\omega v_x - D_f)IK_{xti} + (\omega v_y - g)IK_{yti} + FIK_{zti}$$

 $a_0$  initial position of the ball,  $D_f$  is a frictional force on the horizontal surface, g gravitational force taken as positive in the downward motion, and F is the force applied by the foot when n contact with the ball.



| Structure Introduction Aim P1 | Aim P2 | lssues | Model P2 | Model P2 Results |
|-------------------------------|--------|--------|----------|------------------|
| o oo oo                       | oo     | O      | 00       | 000000000        |

#### PROBLEM(S) ENCOUNTERED

- Mathematical approach to optimize  $IK_{pti}$  for best possible values or position.
- One approach was to use linear simplex method, but the difficulties was to contract the constrains as we are dealing with a dynamical problem.
- The second way is to scale the values directly, but it will take to long because there are so many parameter.

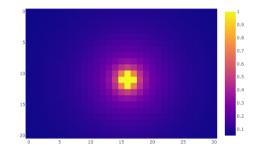


| Structure | Introduction | Aim P1 | Aim P2 | Model P1 | lssues | Model P2 | Model P2 Results |
|-----------|--------------|--------|--------|----------|--------|----------|------------------|
| o         | 00           | oo     | oo     | 000      | oo     | ⊙●       | 000000000        |

#### MODEL P2

Level of importance

- Understand the most important positions to occupy on the field in relation to the ball
- Model player behaviour based on position taken


Let call by  $B(b_x, b_y)$  the position of the ball in the field and I(x, y) any position of the field. The position of I to the ball is given by the formula:

$$d(B, I) = \left[ (x - b_x)^2 + (y - b_y)^2 \right]^{1/2}$$

### MODEL P2 RESULTS

| 0 00 00 00 00 00 00 00 00 00 00 00 00 0 | Structure | Introduction | Aim P1 | Aim P2 | Model P1 | lssues | Model P2 | Model P2 Results |
|-----------------------------------------|-----------|--------------|--------|--------|----------|--------|----------|------------------|
|                                         | o         | 00           | oo     | oo     | 000      | oo     | 00       | o●oooooooo       |

BASE CASE



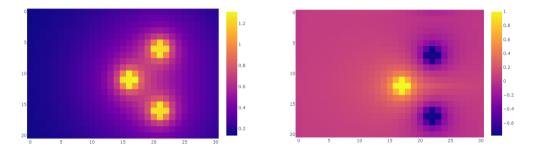
Copyright by 'Us'

B = (0, 0)

Copyright by 'Us

$$B = (-5, 5)$$

|  | el P2 Results |
|--|---------------|
|--|---------------|


#### 2 OPPENENTS AND BALL

Given the position of the two opponents, we can known the most important position in the field by the formula:

$$D = d(B, I) + d(Op1, I) + d(Op2, I)$$

| Structure Introduction Aim P1 Aim P2 Model P1 | lssues | Model P2 | Model P2 Results |
|-----------------------------------------------|--------|----------|------------------|
| o oo oo oo oo                                 | 00     | 00       | 000000000        |

2 OPPENENTS AND BALL ...

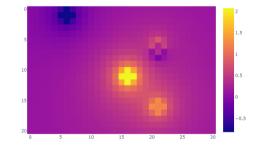


Copyright by 'Us'

Copyright by 'Us

without intersection

with intersection B(0,0); Op1(5,5); Op2(5,-5)

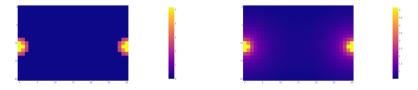

|  |  | Model P1 |  | Model P2 Results |
|--|--|----------|--|------------------|
|  |  |          |  | 000000000        |

#### 2 OPPENENTS CASE AND 2 TEAMATES AND BALL

If we consider as important the place of all the players and the ball, the formula is given:

$$D = d(B, I) + d(Op1, I) + d(Op2, I) + d(T1, I) + d(T2, I)$$

#### 2 OPPENENTS CASE AND 2 TEAMATES AND BALL

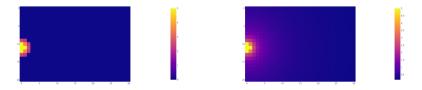



Copyright by 'Us

B(0,0); Op1(5,5); Op2(5,-5); T1(5,-4); T2(-10,-10)

| Introduction | Aim P1 | Aim P2 | Model P1 | lssues | Model P2 | Model P2 Results |
|--------------|--------|--------|----------|--------|----------|------------------|
| 00           | oo     | oo     | 000      | 00     | 00       | 000000●00        |
|              |        |        |          |        |          |                  |

# OFFENCE MAX 2 OPPONENT CASE AND MIN 2 TEAMATES AND BALL WITH/WITHOUT THRESHOLD




Copyright by 'Us'

Copyright by 'Us'

| Introduction | Aim P1 | Aim P2 | Model P1 | lssues | Model P2 | Model P2 Results |
|--------------|--------|--------|----------|--------|----------|------------------|
| 00           | oo     | oo     | 000      | 00     | 00       | 000000000        |
|              |        |        |          |        |          |                  |

# DEFENCE MAX 2 OPPONENT CASE AND MIN 2 TEAMATES AND BALL WITH/WITHOUT THRESHOLD



Copyright by 'Us'

Copyright by 'Us'

| Introduction | Aim P1 | Aim P2 | Model P1 | lssues | Model P2 | Model P2 Results |
|--------------|--------|--------|----------|--------|----------|------------------|
| 00           | oo     | oo     | 000      | 00     | 00       | 00000000●        |

## The End

### We **STILL** love robots

:)